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ABSTRACT 

Selv in, S. (Department of Biomedical and Environmenta.l 

llealth Sciences, University of California, Berkeley, CA 

94720), D. Merrill and S. T. Sacks. AM J Epidemiol 

xxx:xxx -xxx, 1981. 

A number of recent papers use geographically defined 

data and linear models to study the relationship between a 

series of epidemiologic factors and the frequency of 

disease. This "ecologic regression" approach involves seri­

ous problems of interpretation. An alternate approach is 

discussed that does not depend on statistical models, pro­

duces easily interpreted results, and yields statistical 

summaries that approximately parallel regress ion analysis. 

This alternative procedure is illustrated with a small set 

of national leukemia mortality data. 
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Analysis of Mortality Rates 

Basic to epidemiology is the identification and assess­

ment of factors influencing disease. One analytic approach 

involves linear models with disease rates serving as the 

dependent variable and a series of independent va:r iables 

derived from summaries of aggregated data (sometimes called 

ecologic regression analysis). For example, the application 

of regression techniques to geographic units rather than 

individuals is the basis for several studies of the rela 

tionship between mortality and air pollution [e.g., refer­

ences (l) or (2)]. The possible utility and potential pit­

falls ("ecologic fallacies") of analyzing ecologic data 

became focused when Robinson (3) pointed out that the 

behavior of a series of individuals cannot be usually 

inferred from the analysis of summary values associated with 

aggregated units. Although Robinson's remarks dealt with the 

appJ i cat_ ion of product-moment correlation coefficients and 

other· authors have continued to describe the problems of 

ecologic inferences [e.g., references (4), {5), or (6)], 

little has been offered in the way of approaches to analyz­

ing mortality data. 

I ncr eased ava i labi 1 i ty of computer technology has lead 

to greater use of large data files, particularly nationwide 

geographically based data. For example, recently published 

data involving t.he more than 3000 U.S. counties, used in 

conjunction with cardiovascular disease mortality rates (7), 

illustrates the use of ecologic regression analysis in epi­

demiology. The extensive cancer mortality maps published by 

the National Cancer Institute ((8), (9)] are further 
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examples of the use of geographically based data for inves­

tigating disease etiology. Geographic variation in leukemia 

rates among U.S. counties has also been quantitatively 

analyzed by investigators at National Cancer Institute using 

regression models applied to age-adjusted mortality rates 

(10). The following discussion presents an analytic stra­

tegy for investigating disease rates and their relationship 

to large sets of ecologic data. This approach parallels to 

some extent ecologic regression analysis without some of the 

well documented problems. The statistical approach to be 

presented applies to a wide range of situations. However, 

for the sake of concreteness and to avoid general terminol­

ogy, the discussion will be in terms of mortality rates 

analyzed in the context of county level data. 

County marta li ty data are often summarized by correla-­

tion coefficients (7) or regression coefficients (10). 

Several problems are of immediate concern when mortality 

rates are treated with regression techniques. Mortality 

rates are generally not normally distributed, which implies 

that statistical tests lead to, at best, approximate signi­

f tcance probabilities. County level mortality rates also 

differ widely in precision (variance) due to the large 

differences in county population. This fact adds another 

disrupting factor in statistical analyses although weighted 

analyses can be performed. Models exist for transforming 

rates to produce dependent variables that more closely con­

form to the structure required for valid statistical 

analysis. However, transformed rates are rather artificial 
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values with little intuitive appeal and are usually no 

longer independent of the influences of population size, 

which is t.he reason for calculating rates in the first 

place. In addition to statistical difficulties, the epi­

demiological interpretation of regression or correlation 

coefficients is especially complicated when ecologic data 

are employed. The statistical issues and problems of inter­

preting ecologic regression analysis are fully discussed 

elsewhere [e.g., references (4) and (ll)]. Of course, the 

adequacy of a linear model is always a concern for any 

regression analysis regardless of the properties of the 

dependent and independent variables. In spite of the prob­

lems associated with ecologic data analysis these data are 

readily available, usually relatively inexpensive to obtain, 

and can cover the entire U.S. on at least a county level for 

a large number of variables. 

A si.mple linear regression coefficient or correlation 

coefficient is often computed from a set of data to deter­

mine the extent to which two variables are linearly related. 

More qenera11y, two variables are associated when ordering 

one induces in the other some non-random pattern (not neces­

sarily linear). This fact can be used as a basis of inves­

t: iqattnq disease rates and their associations t.o ecologic 

variables. Clearly, this approach to defining an associa­

tion is suited only for variables that can be ordered. 

Acute lymphocyt.ic leukemia mortality among white female 

ch i.ldr en less than 5 years 

1977 (12) will be used 

of age during the period 1969-

to illustrate various points 
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throughout the discussion -- Table 1 gives some brief sum­

mary statistics. 

Suppose interest is focused on the existence of a rela­

t, ionsh ip between leukemia and socio-economic status ( SES) . 

The percentage of county residents earning more than $15,000 

per year (in 1969) is one of the many variables available 

from U.S. Census data and will serve to relate childhood 

leukemia to at least one dimension of socio-economic status. 

A computer file of data is constructed, which contains for 

each county 1) percent income ~ $15,000 2) the number of 

deaths from acute lymphocytic leukemia among white females 

under 5 years old, and 3) an estimate of the person-years at 

risk. In general terms, the file contains 1) an independent 

or predictor variable, 2) a dependent variable, and 3) an 

estimate of person-years at risk for each geographic unit. 

This file is ranked from low to high on the basis of the 

income variable. The number of deaths are then accumulated 

into a series of group with exactly equal numbers of 

person--years at risk so that the file now consists of a 

series of equal-risk groups and the county nature of the 

data is no longer relevant. Deaths to residents of counties 

not entirely included in a single group are proportionally 

d i v tded among the categories over lapped by that county. (A 

FORTRAN listing of a subroutine that performs this task is 

available from the authors.) 

An illust.ration of ten equal-risk categories, is given 

in Table 2. The number of counties (as defined by the ,Johns 

Hopkins Mortality Surveillance Program) is 3075. Six 
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counties have no estimate for percent earning > $15,000 and 

are discarded from the sample. In the remaining 3069 coun-

ties, during the nine years 1969-1977, 605 deaths from acute 

lymphatic leukemia were reported among white females less 

than 5 years old. (There were no deaths in the six dis-

carded counties.) The corresponding estimate of persons-at-

risk is 59,961,008, which is the sum of the estimated popu-

lations (for white females under 5 years) for each of the 

nine years 1969, 1970, 1977. (In this calculation the 

1969 population, which was not available, was assumed equal 

to the 1970 population.) The 605 deaths are distributed into 

10 equal-risk categories each containing 5,996,100.8 

person years of risk (illustrated in table 2). In the fo1-

lowj ng ana lyses 200 rather t.han 10 equa1--r i.sk categories 

were used where the populat.ion-at-r isk in each of the 200 

equal-risk categories is 59,961,008/200 = 299,805.04. 

If the predictor variable is unrelated to the frequency 

of mortality, then the expect_ed number of deat.hs in each 

equal-·r isk group is simply estimated by the overall mean 

value. Under the nuJl hypothesis that an independent or 

predictor variable (for example, percent of persons having 

1 ncome ~ $15, 000) is stochastically independent. of the 

dependent variable (for example, acute lymphocytic leukemia 

mortality), then the expected number of deaths in each of 

200 equal-risk categories is estimated by the mean (e.g., 
•.. 
X = 605/200 = 3.02 deaths). Furthermore, under the 

hypothesis that the predictor variable is unrelated to the 

dependent variable, the number of deaths per category 
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follows a Poisson or Binomial distribution. Note that the 

Poisson property results when no relationship exists between 

the predictor and dependent variable, and should not be 

confused with the occasionally made assumption that the 

number of deaths from a rare disease follows a Poisson dis 

tribution. The number of deaths from any cause or, in fact, 

any discrete variable that has a small, constant and 

independent probability of falling into one of a series of 

categories will follow a Poisson distribution. Therefore, 

the null hypothesis of no association between a disease 

entity and a predictor variable is readily quantified and 

statistically tested. It should be noted that the expected 

number of deaths (3.02) in each equal-risk category is equal 

to the product of the mortality rate (1.009 per 100,000) 

times the population-at-risk (59,961,008 I 200 = 299,805.04) 

in each category. 

The null hypothesis of no association can be tested by 

contrasting the observed variation (S 2 ) in the number of 

deaths with the expected variance from a Poisson distributed 

variable which is estimated by the mean value (x). The 

ratio of these two estimated variances (s
2 ;i) should be 

near l. 0 when no association exists between the predictor 

variable and the number of deaths or the mortality rate. If 

the predictor variable is related to the frequency of 

disease, then an increase over the expected variance should 

be observed. The common chi--square test .t(obs. 
1 

2 ex 1 ) jexi where exi- i) and the chi-square test of vari 

ance ( (k-l)S2 /i. where k = number of equal 
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risk categories) are the same in this case and easily lead 

to significance probabilities ("p-values"). For example, 

the observed variation in the number of female leukemia 

deaths among the 200 equal-risk categories ordered by income 

(% ~ $15,000) is 3.23. This gives a ratio of s2 /x = 1.07, 

yielding a chi-square statistic of 212.9 with a significance 

probability of 0.238 (table 3). 

The use of a chi-square statistic applied to data 

grouped into equal-risk categories is conservative. That 

is, if it is unlikely no association exists (small signifi-

cance probability) using aggregated data, then it is more 

unlikely that no associat.ion exists in the ungrouped (but 

unavailable) data. This Js not the case when regression 

coefficients are employed to test for an association between 

two ecologic variables. The aggregation bias [defined in 

(4)) of ecologic regression coefficients can either increase 

or decrease the observed value. A statistical test of these 

regress ion coefficient, in most cases, will also be censer· 

vative (e.g., understate the t-test statistic) but not 

always. 

The observed variation in the number of deaths can be 

standardized to a number between 0 and 1.0 to create a sum-

mary value analogous to the squared multiple correlation 

coefficient used in regression analysis (i.e., R2 , the per 

r·~ntage of the variation "explained"). The maximum variance 
" ' 

1n the number of deaths among a series of equal risk 

cateqor ies occurs when the dependent variable is ordered 

before the data is aggregated into equal-size groups. 
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Another view of this relationship comes from noticing that 

when the number of deaths serves as both the predictor and 

the dependent variables, the variability among categories 

(predictability) is maximized. In the case of female child-

hood leukemia the maximum possible variability among the 200 

categories is 12.99, resulting in a "correlation­

coefficient-like" value of "R2 " = 3.23/12.99 - 0.249 asso­

ciated with income(%~ $15,000). 

In order to implement the strategy of employing equal·­

risk groups, a choice must be made for the number of groups. 

If only a few groups are chosen, the breadth and variability 

of the data are lost. If too many groups are chosen, i.t 

then defeats the purpose of grouping the data. Experience 

with a number of nationwide data sets shows that the 

observed variance (82 ) decreases slightly as the number of 

groups chosen increases. However, empirically it seems 

that, for county level data, the ratio 8 2 /x is more or less 

stable for a number of groups between 100 and 500. Neverth~-

less, relative comparison of these ratios is useful even 

when there is some subject i v it.y in the act.ual statistical 

test procedure. This same phenomenon is usually an issue 

with most chi-square tests employing categorical data. 

Any ordinal variable can be used as the predictor in 

this approach using equal-risk categories to analyze mortal-

ity data. Several papers in the 1 i terature dis cuss 

urban/rural influences on leukemia rates [e.g., references 

(10) or (13)]. Employing the percentage of urban area in 

each county (percent urban) as a predictor variable produces 
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an observed variation in the number of deaths among the 200 

equal risk categories of s 2 
= 3. 43 (Table 3) . Since the 

expected variance remains equal to the mean x 3.02 deaths 

per category, the ratio s 2 jx == 1.14 yields a chi~square 

statistic of 226.8 with a "p-value"- 0.082 (table 3). Simi-

larly, elevation above sea level is occasionally discussed 

as a risk factor associated with leukemia ( 14) . In this 

case, the predictor variable of elevation induces an empiri· 

cal variance of s2 = 3.45 and, again, compared to an 

expected value of 3.02 yields a "p-value" = 0.078 (Table 3). 

In both cases, "R2 " = 0.27, which indicates that both pred­

ictor variables (percent urban and elevation) are moderately 

related to the frequency of childhood acute lymphocytic 

1.eukemia nationwide. 

Computer mapping has recently become a popular method of 

studying nationwide mortality rates [e.g., (7), (8) and 

(g)]. Often, these maps can be somewhat difficult to inter-

pret objectively. For example, the large western counties 

have a d i sproport tonate visual impact when a map of the 

entire U.S. is considered. The part it toning of mortality 

data into equal-risk categortes with respect to a specific 

predictor variable is an effective analytic tool for assess· 

1 nq geographic patterns. When the pred tct.or variables are 

the county centroid latitude and longitude or functions 

thereof, the observed variation in mortality can be used to 

evaluate the strength of geographic patterns. Sorting 

numbers of deaths into a ser j es of equal-risk categories 

based on, say, latitude (or longitude) is equivalent to 
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counting the numbers of deaths in a series of geographic 

strips having equal populations-at-risk. If the observed 

variability does not differ significantly from the variance 

expected under the Poisson assumption, then it is reasonable 

to conclude that the data do not reflect a detectable geo-

graphic patterns. Rejecting the Poisson hypothesis, on the 

other hand, implies that geographic patterns are likely to 

exist. The data on childhood leukemia show a strong associ­

ation with latitude (S 2 
= 4.48 implying p < 0.001 table 3) 

and none with longitude (S 2 
= 3.13 implying p = 0.355 table 

3). It is also possible that more complicated patterns are 

of interest. For example, one might hypothesize from the 

results of other analyses that low rates are seen in the 

center of the U.S. and high rates near the boundaries. This 

possibility can be assessed using as a predictor variable an 

index that is low near the geographic center of the country 

and increases toward the borders. The childhood lymphocytic 

leukemia analyzed with such an index 

index - (longitude - 91.9) 2 + (latitude - 38.3) 2 where 

(91.9, 38.3) is the approximate position (in degrees) of the 

U.S. geographic centroid) yields an observed variation in 

the number of deaths of s 2 
= 4.34 (p < 0.001), indicating 

that a two-dimensional parabolic function significantly 

describes the leukemia mortality pattern. 

An important feature of regression analysis is the pos-

s i.bi 1i ty to add or remove variables from the analysis and 

observe the influence on some measure of change such as the 

residual sum of squares. Similarly, an index, say the first 
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principal component, can be formed; then, changes in the 

variation (S 2 ) of the number of deaths resulting from the 

addition or subtraction of predictor variables from this 

index can serve to indicate the relative influence of sub-

sets of predictor variables. For example, the first princi-

pal component based on the variance-covariance array of the 

ten ecologic variables (percent migration, percent urban, 

percent black, percent earning, < $3,000, percent earning ~ 

$15,000, percent professional, percent employed in manufac-

turing, percent college educated, percent foreign residents, 

and e lev at. ion) produces an observed variation in leukemia 

~ t 1
• f s 2 ~).2.2 ("R2 " uea .rlS o · = .1 0.248) among the 200 equal-risk 

cateqor ies (table 3). If all but the two income variables 

(percent < $3,000 and percent ~ $15,000) are removed from 

the analysis and the first principal component based on just 

t.hese two variables is used as a predictor, the observed 

var i.ation is only slightly reduced, to s 2 3.19 ("R2 " = 

0.246). This inconsequential change indicates that the 

maJor influence among the ten predictor variables is 

income-related. The use of a canonical index in conjunction 

with the equal-risk procedure is analogous to the "extra sum 

or nquares" principle ( 15) employed in multiple regress ion 

analysis, but lacks a formal "F-to-remove 11 test. Also, each 

variable added to a linear regression analysis monotonically 

1 ncr eases the regress ion sum of squ<ues. This is not the 

case for an index based on pr inc i.pal components since the 

observed variation s 2 can either increase or decrease when 

variables are added to the index. However, the adding and 
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removing of variables from an index to assess the multivari­

ate impact on s 2 is essentially assumption-free. The 

suggestion to use an index to provide a multivariate 

approach to the analysis of leukemia mortality is one of 

many possibilities. Other, perhaps more sensitive, tech­

niques could indeed be employed and their statistical pro-

perties examined. 

The classification of data into equal-risk categories is 

not automatically superior or inferior to "ecologic regres-

sion analysis." For example, a regression analysis produces 

a predictive equation that can be used to make estimates of 

mortality rates which are potentially useful and are not 

produced by using equal-risk categories. Like any analytic 

technique, the properties underlying the data will dictate 

the appropriate analysis. The suggested approaches, which 

are by no means exhaustive, merely indicate possible ways of 

dealing with some problems inherent in county-level mortal­

ity data to test for epidemiologic relevant associations. 
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Table 1 

Summary statistics for acute lymphocytic leukemia U.S. mor 
tality* among white females under five years old (1969 · 
1977). 

Deaths in Number of Total Population 
county counties deaths at risk 

0 2699 0 28,831,365 

1 254 254 11,510,954 

2 69 138 6,796,916 

3 23 69 3,376,622 

41· 24 144 9,445,151 

Total 3069 605 59,961,008 

average annual mortality 1.009/100,000. 

maximum deaths in county 29 (Los Angeles County, CA) 

*Data source: National Center for Health Statistics, tabu 
lated by Alan Gittelshohn, Johns Hopkins University (12). 
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Table 2 

Sample calculation for 10 equal risk categories using 
u.s. mortality per 100,000 from acute lymphocytic leukemia 
for white females age 0-4 (1969-1977) 

Sample .Number of Population- Percent Deaths 

Counties at-Risk >.1 $15,000 1969·-1977 

01 1213.1 5996100.8 6.4 59.0 

02 702.2 5996100.8 10.4 61.0 

03 443.0 5996100.8 13.3 66.0 

04 265.6 5996100.8 16.0 65.0 

05 140.5 5996100.8 18.4 70.9 

06 102.9 5996100.8 20.6 64.8 

07 84.2 5996100.8 23.4 54.4 

08 53.0 5996100.8 27.1 62.1 

09 24.8 5996100.8 30.3 48.5 

10 39.7 5996100.8 38.7 53.3 

TOTAL 3069.0 59961008.0 20.5 605.0 

MISSING 6.0 17384.0 
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Table 3 

Various statistical summaries relating acute lymphocytic 
leukemia mortality among white females under five years old 
(1969-1977) to a series of predictor variables. 

Predictor s2 s 2 /i "p--value" "R2 11 

Income (% ~ $15,000) 3.23 1.07 0.238 0.249 

Urban (% urban) 3.43 1.14 0.082 0.265 

Elevation 3.45 1.15 0.078 0.266 

Geographic 

Longitude 3.13 l. 04 0.335 0.241 

Latitude 4.48 1.49 (0.001 0.345 

Index 4.34 1.44 (0.001 0.334 

Principal Component Index 

Index all 10 variables 3.22 1. 07 0.238 0.248 

Index two income variables 3.19 1.06 0.268 0.246 

20 




